Bottom-Up and Top-Down Approaches to the PFAS Problem: From Molecular Models to Policy Frameworks

Carla A. Ng
Civil and Environmental Engineering, University of Pittsburgh

Per- and polyfluorinated alkyl substances (PFAS) are a diverse group of chemicals used in a dizzying array of applications. Public concern is growing over ubiquitous human exposure to PFAS, and the recognition that some PFAS are bioaccumulative and can be toxic even at extremely low concentrations. This concern has prompted policy action at state, federal, and international levels. Yet the development of sound policy and decisions around PFAS is complicated by lack of data on most members of the broad class of chemicals and by the practical difficulties around a substance-by-substance approach to evaluating these chemicals, particularly given their unique properties and behavior in environmental and biological systems. Ng highlights several initiatives from her research group and collaborative work to tackle the PFAS problem at two levels. At the molecular level, she is developing integrative modeling strategies to predict the behavior and potential hazard of diverse PFAS using computational approaches that help to overcome limitations of traditional testing and increase throughput. At the policy framework level, she is collaborating with a team of international academic and regulatory scientists and policy analysts to develop scientifically sound strategies to eliminate hazardous PFAS from products and processes.

View Ng's presentation

Start date
Friday, Oct. 23, 2020, 10:10 a.m.
End date
Saturday, Oct. 10, 2020, 11:15 a.m.
Location
Carla Ng

Share