New discovery aims to improve the design of microelectronic devices
A new study led by Prof. Andre Mkhoyan from CEMS is providing new insights into how next-generation electronics, including memory components in computers, breakdown or degrade over time. Understanding the reasons for degradation could help improve efficiency of data storage solutions.
The research is published in ACS Nano, a peer-reviewed scientific journal and is featured on the cover of the journal.
Advances in computing technology continue to increase the demand for efficient data storage solutions. Spintronic magnetic tunnel junctions (MTJs)—nanostructured devices that use the spin of the electrons to improve hard drives, sensors, and other microelectronics systems, including Magnetic Random Access Memory (MRAM)—create promising alternatives for the next generation of memory devices.
MTJs have been the building blocks for the non-volatile memory in products like smart watches and in-memory computing with a promise for applications to improve energy efficiency in AI.
Using a sophisticated electron microscope, researchers looked at the nanopillars within these systems, which are extremely small, transparent layers within the device. The researchers ran a current through the device to see how it operates. As they increased the current, they were able to observe how the device degrades and eventually dies in real time.
To learn more, please read the full article at the College of Science and Engineering's website.