Colloquium - Black and Gold: Capturing Neutron Star Mergers from the Ground and Space

Leo Singer, NASA

Neutron star binary mergers are powerful and distinctive sources of gravitational waves but also leave behind broadband electromagnetic radiation in the form of gamma-ray bursts, afterglows, and kilonovae. Multimessenger observations of them can be remarkably illuminating in topics from fundamental physics to cosmology to nucleosynthesis. To date, LIGO and Virgo have detected several neutron star mergers, one with an exceptionally bright and well-studied electromagnetic counterpart. Electromagnetic follow-up of gravitational-wave sources is highly rewarding but also highly challenging because telescopes may have only hours to scan over the LIGO/Virgo/KAGRA localization before the blast reddens and fades beyond detectability. I will discuss several interconnected topics related to observing neutron star mergers from the ground and space: ground-based kilonova searches with the Zwicky Transient Facility, a proposed NASA mission for rapid ultraviolet observations of mergers, next-generation algorithms and software to optimally coordinate follow-up with networks of telescopes, and what to expect from the upcoming observing run of LIGO, Virgo, and KAGRA.

Here's the link to sign up to meet with him.

Start date
Thursday, March 31, 2022, 3:35 p.m.
End date
Thursday, March 31, 2022, 4:35 p.m.

B50/with remote option