Edward Silberman Award Ceremony and Distinguished Lecture

Presentation of the 2020 Edward Silberman Fellowship
Award Recipient:
Aliza Abraham, Department of Mechanical Engineering, UMN for her research "The effect of dynamic operation and incoming flow on the wake of a utility-scale wind turbine."

Distinguished Lecture: Employing environmental turbulence data for renewable energy prediction and environmental sustainability
Distinguished SpeakerCorey Markfort, Assistant Professor, Department of Civil and Environmental Engineering, University of Iowa

With increasing demand for renewable energy and development of wind farms over large areas of land and coastal seas, accurate prediction of atmospheric boundary layer flow and interactions with wind turbines is needed for optimizing design and improving efficiency of individual turbines and wind power plants. Once developed, wind plant operators must ensure energy generation meets regulations to minimize environmental impacts. This requires quantification of impacts to wildlife and surface ecosystems. As wind plants are built in more diverse locations, non-ideal flows with greater shear and turbulence necessitate new models for accurate flow field and power prediction. Interactions between arrays of wind turbines and underlying ecosystems, water waves, and even effects on blowing and drifting snow present new challenges. Advanced models supported by high-fidelity environmental data provides new opportunities for optimizing wind plants to both maximize power production and minimize negative environmental impacts.

This presentation will focus on efforts by our team to integrate environmental turbulence measurements to improve wind energy models and guide efforts to quantify environmental impacts for use in next generation wind plant design and control algorithms. Using turbulence measurements from tall towers and nacelle-mounted Doppler wind LiDAR, we have developed advanced power prediction and wake models to improve wind turbine and wind plant power forecasts. We also investigate use of mobile Doppler radar and infrared cameras to monitor bat activity around individual wind turbines and wind farms. Finally, new efforts to quantify the effects of offshore wind energy development on wind-wave processes will be shown, using highly resolved measurements of coupled wind-wave dynamics in a new atmospheric boundary layer wind-wave tunnel.

 

Category
Start date
Tuesday, Nov. 10, 2020, 3 p.m.
Location

In-person event

Share