Pattern formation in suspension flows - Sungyon Lee - UMN Mechanical Engineering

Talk Title: Pattern formation in suspension flows
Sungyon Lee, Benjamin Mayhugh Assistant Professor, Mechanical Engineering

Abstract: 
In this talk, we focus on two complementary flow configurations in which the presence of suspended particles drastically alters the dynamics of the fluid-fluid interface and leads to pattern formation. First, we discuss the result of injecting air into a packing of soft hydrogel beads that are saturated in water. We find that this new combination of buoyancy, capillarity, and elasticity under confinement leads to complex morphologies of air migration, as well as nontrivial dynamics in the amount of trapped air in the system. In the second part of the talk, we report a particle-induced fingering instability when a mixture of particles and viscous oil is injected radially into an air-filled Hele-Shaw cell. Our experimental results show that the characteristics of fingering depend on the particle volume fraction and on the ratio of the particle diameter to gap size. A reduced model is also presented to rationalize the fingering behavior. 

About the Speaker: Sungyon Lee is a Benjamin Mayhugh Assistant Professor in Mechanical Engineering at the University of Minnesota. She completed her Ph.D. and M.S. in Mechanical Engineering at Massachusetts Institute of Technology, and B.S. in Mechanical Engineering at University of California, Berkeley. Following a post-doc at Ecole Polytechnique and adjunct faculty position in Applied Math at University of California, Los Angeles, she was an assistant professor in the Mechanical Engineering at Texas A&M University from 2013-2017. Dr. Lee's fluid mechanics research group specializes in reducing complex physical phenomena into tractable problems that can be visualized with table-top experiments and solved with mathematical modeling. The physical systems of interest range from drops and bubbles, particle-laden flows and interfaces, to two-phase flows through porous media. 

Category
Start date
Tuesday, Oct. 13, 2020, 3 p.m.

Share