Optimal sensor and actuator selection in dynamic networks

NEIL DHINGRA, MIHAILO R. JOVANOVIĆ, AND ZHI-QUAN LUO

Motivation

Select optimal subset of potential sensors/actuators
- Sensor/Actuator types
- Sensor/Actuator locations

Applications
- Heterogeneous robotic networks
- Phasor Measurement Units in power networks
- Sensors and actuators in flexible aircraft wings

Actuator Selection

Model

Linear system with many actuators
\[x = Ax + B_1 d + B_2 u \]

Performance Measure

Steady-state variance amplification
\[\lim_{t \to \infty} E \left(x^T(t) Q x(t) + u^T(t) R u(t) \right) \]

Objective

Identify row-sparse state-feedback controller
\[u = \lambda K x \]

to balance:

Performance: variance amplification

Sparsity: number of actuators

Optimization Problem

minimize \[J(K) + \sum_{i=1}^{m} e_i^T K e_i \]

subject to \[AX + XA^T \succ B_2 Y \succ Y^T B_2^T + B_1 B_1^T = 0 \]

\[X \succeq 0 \]

Efficient Algorithm

Alternating Direction Method of Multipliers

Form augmented Lagrangian
\[\mathcal{L}(X, Y) := J(X, Y) + g(Y) + \phi(X, Y) \]

by dualizing and penalizing linear constraint, \(h(X, Y) \),

\[\phi(X, Y) := \text{trace}(X Y) + \frac{1}{2} h(X, Y) \]

Iteratively Solve Tractable Subproblems

\[X_{k+1} = \arg\min_X \mathcal{L}(X, Y_k, k) \text{ Projected Descent} \]

\[Y_{k+1} = \arg\min_Y \mathcal{L}(X_{k+1}, Y, k) \text{ group LASSO} \]

\[k_{k+1} = k + h(X_{k+1}, Y_{k+1}) \]

Sensor Selection

Estimate state \(x \) from noisy output \(y \)

\[x = Ax + B_1 d \]

\[y = C x + \]

Identify observer gain to balance

Performance: variance amplification

Sparsity: number of sensors

Key Point

Can be brought to actuator selection problem

A Sensor Selection Example

Vehicular formation

Objective

Optimal GPS placement

CVX vs ADMM for \(n = 100 \):

Acknowledgements

MnDRIVE Graduate Scholars Program Fellowship

NASA Harriett G. Jenkins Predoctoral Fellowship