Publications

  1. X. Ai, Y. Chen, S. Dong, E. Evans, R. H. Friend, A. Gillett, H. Guo, and T. Hele. “Efficient radical-based light-emitting diodes with doublet emission.” Nature 563, pages 536-540, 2018. doi:10.1038/s41586-018-0695-9
  2. D. Arnold, G. David, M. Filoche, D. Jerison, and S. Mayboroda. “Computing spectra without solving eigenvalue problems.” SIAM J. Sci. Comput., 41(1), B69–B92 (2019). doi:10.1137/17M1156721. Featured in the Journal Club for Condensed Matter Physics, “Hidden landscape of an Anderson insulator." arXiv:1711.04888
  3. D. Arnold, G. David, M. Filoche, D. Jerison, and S. Mayboroda. “Localization of eigenfunctions via an effective potential." Comm. PDE (2019). doi: 10.1080/03605302.2019.1626420. arXiv:1712.02419
  4. D. Arnold and S. Walker. The Hellan-Herrmann-Johnson method with curved elements. SIAM Journal on Numerical Analysis. Accepted. (2020). arXiv:1909.09687
  5. A. Barton, S. Hofmann and S. Mayboroda. “Bounds on layer potentials with rough inputs for higher order elliptic equations.” Proc. Lond. Math. Soc. (3) 119, no. 3, 613–653. (2019). arXiv:1703.06847
  6. A. Barton, S. Hofmann and S. Mayboroda. “Nontangential estimates on layer potentials and the Neumann problem for higher order elliptic equations.” International Mathematics Research Notices, Accepted. (2020). arXiv:1808.07137
  7. A. Barton, S. Hofmann, and S. Mayboroda. “Dirichlet and Neumann boundary values of solutions to higher order elliptic equations.” Annales de l’Institut Fourier, 69, no. 4, 1627–1678. (2019). arXiv:1703.06963
  8. T. Beck, D. Jerison, and S. Raynor. “Two phase free boundary problems in convex domains”, Journal of Geometric Analysis, Accepted. (2020). arXiv:2004.10175
  9. C. C. de Bellaistre, C. Trefzger, A. Aspect, A. Georges, and L. Sanchez-Palencia, “Expansion of a quantum wave packet in a one-dimensional disordered potential in the presence of a uniform bias force,” Physical Review A 97 (1). (2018). arXiv:1710.05595
  10. G. Berthet, L. Lavoine, M.K. Parit, A. Brolis, A. Boisse, and T. Bourdel, “Observation of the algebraic localization-delocalization transition in a one dimensional disordered potential with a bias force”, Physical Review Research 2, 013386. (2020). arXiv:1908.01511
  11. B. Bonef, C. Reilly, F. Wu, S. Nakamura, S. DenBaars, S. Keller, and J. Speck. “Quantitative investigation of indium distribution in InN wetting layers and dots grown by metalorganic chemical vapor deposition,” Applied Physics Express 13, 065005. (2020)
  12. S. Bortz, S. Hofmann, J. L. Luna Garcia, S. Mayboroda, and B. Poggi. Critical Perturbations for Second Order Elliptic Operators. Part I: Square function bounds for layer potentials.”Analysis & PED, accepted, 2020. arXiv:2003.02703
  13. Y. Chalopin, F. Piazza, S. Mayboroda, C. Weisbuch, and M. Filoche. “Universality of fold-encoded localized vibrations in enzymes.” Scientific Reports 9, 12835. DOI: 10.1038/s41598-019-48905-8. (2019). arXiv:1902.09939
  14. G. David. “A local description of 2-dimensional almost minimal sets bounded by a curve.Annales Mathematiques de la Faculte des sciences de Toulouse. Accepted. (2019). arXiv:1901.10171
  15. G. David. “Local Regularity Properties of Almost and Quasiminimal Sets With a Sliding Boundary Condition.” Astérisque No. 411 ix+377 pp. (2019). arXiv:1401.1179
  16. G. David. “Sliding almost minimal sets and the Plateau problem.” PCMI lecture series (Princeton). Accepted. (2019). arXiv:1812.02039
  17. G. David, M. Engelstein, and S. Mayboroda. “Square functions, non-tangential limits and harmonic measure in co-dimensions larger than one.” Accepted, Duke Math Journal. (2020). arXiv:1808.08882
  18. G. David, M. Engelstein, and T. Toro. “Free boundary regularity for almost-minimizers.” Advances in Mathematics. Accepted, arXiv:1702.06580. (2019). arXiv:1702.06580
  19. G. David, J. Feneuil, and S. Mayboroda. “A new elliptic measure on lower dimensional sets.” Acta Mathematica Sinica, English Series, Conference proceeding, 2018. arXiv:1807.07035. arXiv:1807.07035
  20. G. David, J. Feneuil, and S. Mayboroda. “Dahlberg’s theorem in higher co-dimension.” Funct. Anal. 276, no. 9, 2731–2820. (2019). arXiv:1704.00667
  21. G. David, J. Feneuil, and S. Mayboroda. “Elliptic theory for sets with higher co-dimensional boundaries.” Memoirs of the AMS. Accepted. (2018). arXiv:1702.05503
  22. G. David and S. Mayboroda. “Good elliptic operators on Cantor sets.” Advances in Mathematics, accepted. arXiv:2007.01745
  23. J. Feneuil, S. Mayboroda, and Z. Zhao. “Dirichlet problem in domains with lower dimensional boundaries.” Revista Matemática Iberoamericana. Accepted. (2018). arXiv:1810.06805
  24. M. Filoche, D. Arnold, G. David, D. Jerison, and S. Mayboroda, "Reply to comment on Effective Confining Potential of Quantum States in Disordered Media", Phys. Rev. Lett. 124, 219702. (2020). arXiv:1505.02684
  25. W. Hahn, J.-M. Lentali, P. Polovodov, N. Young, S. Nakamura, J. S. Speck, C. Weisbuch, M. Filoche, Y.‑R. Wu, M. Piccardo, F. Maroun, L. Martinelli, Y. Lassailly, J. Peretti. “Evidence of intrinsic nanoscale electron localization induced by composition disorder in InGaN/GaN quantum wells by scanning tunneling luminescence spectroscopy.” Phys. Rev. B 98, 045305 (2018). doi:10.1103/PhysRevB.98.045305. arXiv:1805.09030
  26. D. Jerison. “The Two Hyperplane Conjecture.” Acta Mathematica Sinica, English Version, vol 35 (6) June 2019, pp 728--748. arXiv:1809.10759. arXiv:1809.10759
  27. D. Jerison and N. Kamburov. “Free boundaries subject to topological constraints.” Disc. Cont. Dyn. Systems. Accepted. (2019). arXiv:1902.00158
  28. M. Khoury, H. Li, B. Bonef, T. Mates, F. Wu, P. Li, M.Wong, H. Zhang, J. Song, J. Choi, J. Speck, S.Nakamura, and S. DenBaars. “560 nm InGaN micro-LEDs on Low-defect Density and Scalable” (20-21) Semipolar GaN on Patterned Sapphire Substrates, Optics Express 28, 18150. (2020). doi:10.1364/oe.387561
  29. C. Lynsky, G. Lheureux, R. White, A. Alhassan, B. Bonef, C. Weisbuch, and J. Speck. “Barriers to carrier transport in multiple quantum well nitride-based c-plane green light emitting diodes”, Phys. Rev. Materials 4, 054604. (2020). doi:10.1103/PhysRevMaterials.4.054604
  30. S. Mayboroda. “The effect of disorder and irregularities on solutions to boundary value problems and spectra of differential operators.” Proceedings of the International Congress of Mathematicians–Rio de Janeiro 2018. Vol. III. Invited lectures, 1691–1712, World Sci. Publ., Hackensack, NJ. (2018). International Congress of Mathematicians.
  31. S. Mayboroda and B. Poggi. “Carleson perturbations of elliptic operators on domains with low dimensional boundaries.” Journal of Functional Analysis, accepted. arXiv:2007.07492
  32. S. Mayboroda and B. Poggi. “Exponential decay estimates for fundamental solutions of Schrödinger-type operators.” Transactions of the AMS, 372, no. 6, 4313–4357. (2019). arXiv:1801.05499
  33. S. Mayboroda and Z. Zhao. “Square function estimates, BMO Dirichlet problem, and absolute continuity of harmonic measure on lower-dimensional sets.” Analysis & PDE, 12, no. 7, 1843–1890. (2019). arXiv:1802.09648
  34. Y. Meyer. “From Salomon Bochner to Dan Shechtman.” Transactions of The Royal Norwegian Society of Sciences and Letters. (1) 1-22. (2020). hal-02471683
  35. Y. Meyer. “Trigonometric series with a given spectrum.” The Tunisian Journal of Mathematics. Vol. 2, No. 4, 881906. (2020). doi:10.2140/tunis.2020.2.881
  36. Y. Meyer. “A letter by Eli Stein.” Accepted for publication in The Journal of Geometric Analysis (JGA). (2019)
  37. Y. Meyer. “Oscillating Patterns in Image Processing and In Some Nonlinear Evolution Equations.” The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures. Documents Mathematiques of the French Mathematical Society. Accepted. (2019). ISBN:978-0821829202
  38. Y. Meyer. “Restriction algebras of Fourier-Stieltjes transforms of Radon measures.” Journal of Geometric Analysis, Accepted. (2019)
  39. Y. Meyer. “Global and local estimates on trigonometric sums.” Transactions of The Royal Norwegian Society of Sciences and Letters, Accepted. (2018). Semantic Scholar
  40. K. S. Qwah, M. Monavarian, G. Lheureux, J. Wang, Y.-R. Wu, and J. S. Speck. “The-oretical and experimental investigations of vertical hole transport through unipolar Al-GaN structures: Impacts of random alloy disorder,” Applied Physics Letters 117, 022107. (2020). doi:10.1063/5.0006291
  41. C. Reilly, B. Bonef, S. Nakamura, J. Speck, S. DenBaars, and S. Keller. “Characterization of InGaN quantum dots grown by metalorganic chemical vapor deposition.” Semicond. Science And Technology 34, 125002. (2019). doi:10.1088/1361-6641/ab4b93
  42. J. Richard, L. K. Lim, V. Denechaud, V. V. Volchkov, B. Lecoutre, M. Mukhtar, F. Jendrzejewski, A. Aspect, A. Signoles, L. Sanchez-Palencia, and V. Josse, “Elastic Scattering Time of Matter Waves in Disordered Potentials,” Physical Review Letters 122 (10) (2019). arXiv:1810.07574
  43. I. Sayed, B. Bonef, S. Keller, U. Mishra, and J. Speck. “Electrical properties and interface abruptness of AlSiO gate dielectric on (0001) Ga-polar GaN and (000-1) N-polar GaN,” Appl. Phys. Lett. 115, 172104. (2019). doi:10.1063/5.0012289
  44. A. Signoles, B. Lecoutre, J. Richard, L. K. Lim, V. Denechaud, V. V. Volchkov, V. Angelopoulou, F. Jendrzejewski, A. Aspect, L. Sanchez-Palencia, and V. Josse, “Ultracold atoms in disordered potentials: elastic scattering time in the strong scattering regime,” New Journal of Physics 21 (10). (2019). arXiv:1910.04148
  45. W. Wang and S. Zhang. “The exponential decay of eigenfunctions for tight binding Hamiltonians via landscape and dual landscape functions.” Annales Henri Poincaré. Accepted, arxiv:2003.07987 (2020). arXiv:2003.07987
  46. C. Weisbuch and J. Speck. On the search for efficient solid state lighting emitters: past, present, future, invited paper in focus issue entitled Wide bandgap III-nitride devices and SSL lighting: A tribute to Professor Akasaki,” ECS Journal of Solid State Science and Technology 9, 016022. (2020). doi:10.1149/2.0392001JSS
  47. M. A. Werner, E. Demler, A. Aspect, and G. Zarand, “Selective state spectroscopy and multifractality in disordered Bose-Einstein condensates: a numerical study,” Scientific Reports 8. (2018). arXiv:1709.08993

Preprints and submitted manuscripts

  1. R. Aleksiejūnas, K. Nomeika, O. Kravcov, S. Nargelas, L. Kuritzky, C. Lynsky, S. Naka-mura, C. Weisbuch, and J.Speck. “Impact of alloy disorder induced localization on hole diffusion in highly excited c-plane and m-plane InGaN quantum wells.” Submitted. (2020). doi:10.1103/PhysRevApplied.14.054043
  2. A. Alvertis, R. H. Friend, A. Rao, A. Chin, and B. Monserrat. “Exciton temperature dependence dictated by localization in organic semiconductors.” Submitted.
  3. D. Arnold and K. Hu. “Complexes from Complexes.” Submitted. arXiv:2005.12437
  4. T. Beck and D. Jerison. The Friedland-Hayman inequality and Caffarelli’s contraction theorem.” Submitted. (2019)
  5. T. Beck and D. Jerison. “The case of equality in an inequality of Friedland-Hayman type.” Submitted. (2019)
  6. P. C.Y. Chow, T. F. Hinrichsen, C. C.S. Chan, D. Palecek, A. Gillett, S. Chen, X. Zou, C. Ma, K. Sing Wong, R. H. Friend, H. Yan, and A. Rao. “Endothermic charge separation in efficient non-fullerene organic solar.” Submitted. arXiv:2004.02487
  7. G. David, M. Engelstein, M. Smit Vega García, and T. Toro. “Regularity for almost-minimizers of variable coefficient Bernoulli-type functionals.” Submitted. (2019). arXiv:1909.05043
  8. G. David, J. Feneuil, and S. Mayboroda.  “Elliptic theory in domains with boundaries of mixed dimension.” Submitted, 2020. arXiv:2003.09037
  9. G. David, M. Filoche, and S. Mayboroda. “The landscape law for the integrated density of states.” Submitted. arXiv:1909.10558
  10. G. David and S. Mayboroda. “Harmonic measure is absolutely continuous with respect to the Hausdorff measure on all low-dimensional uniformly rectifiable sets.” Submitted, 2020. arXiv:2006.14661
  11. M. Filoche, S. Mayboroda, T. Tao. “The effective potential of an M-matrix.”  Submitted, 2021. arXiv:2101.01672 
  12. S. Hofmann, L. Li, S. Mayboroda, and J. Pipher. “Lp theory for the square roots and square functions of elliptic operators having a BMO anti-symmetric part.” arXiv:1908.01030
  13. S. Hofmann, L. Li, S. Mayboroda, and J. Pipher. “The Dirichlet problem for elliptic operators having a BMO anti-symmetric part.” Submitted. arXiv:1908.08587
  14. S. Hofmann, J. Martell, and S. Mayboroda. “Transference of scale-invariant estimates from Lipschitz to Non-tangentially accessible to Uniformly rectifiable domains.” arXiv:1904.13116
  15. S. Hofmann, J. Martell, S. Mayboroda, T. Toro, and Z. Zhao. “Uniform rectifiability and elliptic operators satisfying a Carleson measure condition. Part I: The small constant case. arXiv:1710.06157
  16. S. Hofmann, J. Martell, S. Mayboroda, T. Toro, and Z. Zhao. Uniform rectifiability and elliptic operators satisfying a Carleson measure condition. Part II: The large constant case.” arXiv:1908.03161
  17. C. Labourie. “Solutions of the (free boundary) Reifenberg Plateau problem.” arXiv: 2002.09376. Submitted. (2020). arXiv:2002.09376
  18. C. Labourie. “Weak limits of quasiminimizing sequences.” arXiv:2002.08876. Submitted. (2020). arXiv:2002.08876
  19. G. Lheureux, C. Lynsky, Y. Wu, J. Speck, and C. Weisbuch, “A 3D simulation comparison of carrier transport in green and blue c-plane multi-quantum well nitride light emitting diodes.” Submitted. (2020)
  20. Y. Meyer. “Curved model sets and crystalline measures.” Theoretical physics, wavelets, analysis, genomics: An indisciplinary tribute to Alex Grossmann, to be published in the collection.
  21. V. Volchkov, V. Angelopoulou, F. Jendrzejewski, A. Aspect and L. Sanchez-Palencia. Applied and Numerical Harmonic Analysis.” Submitted. (2020)

Background Publications

  1. D. Arnold, G. David, D. Jerison, S. Mayboroda, and M. Filoche. "Effective Confining Potential of Quantum States in Disordered Media." Phys. Rev. Lett. 116, 056602, 2016. doi.org/10.1103/PhysRevLett.116.056602
  2. D. Arnold. “Finite Element Exterior Calculus.” CBMS-NSF Regional Conference Series in Applied Mathematics 93. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2018.
  3. A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H.M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, and R. H. Friend. “The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors.” Science, 10.1126/science.1217745, 2012. doi:10.1126/science.1217745
  4. J. Billy, V. Josse, Z. C. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect. “Direct observation of Anderson localization of matter waves in a controlled disorder.” Nature 453, 891, 2008. arXiv:0804.1621
  5. L. A. Caffarelli, D. Jerison, and C. E. Kenig, “Some new monotonicity theorems with applications to free boundary problems.” Annals of Mathematics. (2) vol 155, no. 2, 369-404, 2002. doi:10.2307/3062121
  6. G. David, M. Filoche, D. Jerison, and S. Mayboroda. “A free boundary problem for the localization of eigenfunctions”. Astérisque 392, SMF 2017. arXiv:1406.6596
  7. S. Félix, M. Asch, M. Filoche, and B. Sapoval.  “Localization and increased damping in irregular acoustic cavities.” Journal of Science and Vibration 299, 965-976, 2007. doi:10.1016/j.jsv.2006.07.036
  8. M. Filoche and S. Mayboroda. “Universal mechanism for Anderson and weak localization.” Proc. Natl Acad. Sci.USA 109 (37):14761-14766, doi:10.1073/pnas.1120432109, 2012. doi:10.1073/pnas.1120432109
  9. M. Filoche, M. Piccardo, Y.-R. Wu, C.-K. Li, C. Weisbuch, and S. Mayboroda. “Localization landscape theory of disorder in semiconductors I: Theory and modeling.” Phys. Rev. B 95, 144204. doi:10.1103/PhysRevB.95.144204, 2017. arXiv:1704.05512
  10. S. Gélinas, A. Rao, A. Kumar, S. L. Smith, A. W. Chin, J. Clark, T. S. van der Poll, G. C. Bazan, and R. H. Friend. “Ultrafast Long-Range Charge Separaton in Organic Semiconductor Photovoltaic Diodes.” Science. DOI: 10.1126/science.1246249, 2014. doi:10.1126/science.1246249
  11. S. Hofmann and J. Martell. “Uniform Rectifiability, Carleson measure estimates, and approximation of harmonic functions.” Duke Math. J., 165, no. 12, 2331–2389, 2016. arXiv:1408.1447
  12. J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch.  “Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop.” Phys. Rev. Lett., 110, 177406, 2013. arXiv:1304.5469
  13. F. Jendrzejewski, A. Bernard, K. Muller, P. Cheinet, V. Josse, M. Piraud, L. Pezzé, L. Sanchez-Palencia, A. Aspect, and P. Bouyer. “Three-dimensional localization of ultracold atoms in an optical disordered potential.” Nature Physics 8, 398, 2012. arXiv:1108.0137
  14. F. Jendrzejewski, K. Muller, J. Richard, A. Date, T. Plisson, P. Bouyer, A. Aspect, and V. Josse. “Coherent Backscattering of Ultracold Atoms.” Physical Review Letters 109 (19), 2012. arXiv:1207.4775
  15. D. Jerison and N. Nadirashvili. “The hot spots conjecture for domains with two axes of symmetry.” J. Amer. Math. Soc. vol 13, pp 741–772, 2000. doi:10.1090/S0894-0347-00-00346-5
  16. G. Lefebvre, A. Gondel, M. Dubois, M. Atlan, F. Feppon, A. Labbé, C. Gillot, A. Garelli, M. Ernoult, M. Filoche, and P. Sebbah. “One single static measurement predicts wave localization in complex structures.” Physical Review Letters, Phys. Rev. Lett., 117, 074301, 2016. doi:10.1103/PhysRevLett.117.074301
  17. M. Leite Lyra, S. Mayboroda, and M. Filoche. “Dual landscapes in Anderson localization on discrete lattices.” EPL (Europhysics Letters), 109 (4), 2015. arXiv:1410.2229
  18. S. Mayboroda and V. Maz’ya. “Polyharmonic capacity and Wiener test of higher order.” Inventiones Mathematicae, 211(2), 779-853. 2018. doi:10.1007/s00222-017-0756-y
  19. V. Maz’ya. “Regularity of solutions to the polyharmonic equation in general domains.” Inventiones Mathematicae, 196, no. 1, 1–68. DOI: 10.1007/s00222-013-0464-1, 2014. arXiv:1206.0081
  20. Y. Meyer. “A note on harmonious sets.” To be published in the Springer volume dedicated to the Life and Work of Jean Bourgain. (manuscript in preparation). hal-02489358
  21. Y. Meyer. “Measures with locally finite support and spectrum.” Proceedings of the National Academy of Sciences (USA). Vol 113, March 22, 2016. doi:10.1073/pnas.1600685113
  22. Y. Meyer and R. R. Coifman. “Wavelets: Calderón–Zygmund and Multilinear Operators.” Number 48 in Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997. doi:10.1112/S0024609397283955
  23. P. Pelletier, D. Delande, A. Aspect, V. Josse, D. Arnold, S. Mayboroda and M. Filoche. “Spectral functions and localization landscape in speckle potentials.” (manuscript in preparation)
  24. M. Piccardo, C.-K. Li, Y.-R. Wu, J. S. Speck, B. Bonef, R. M. Farrell, M. Filoche, L. Martinelli, J. Peretti, and C. Weisbuch. “Localization landscape theory of disorder in semiconductors II: Urbach tails of disordered quantum well layers.” Phys. Rev. B, 95, 144205, 2017. arXiv:1704.05524
  25. C. Reilly, B. Bonef, S. Nakamura, J. Speck, S. DenBaars, and S. Keller. “Characterization of phase separation in MOCVD InGaN quantum dots with atom probe tomography.” (manuscript in preparation)
  26. A. Rowe, A. Thayil, M. Filoche, J. McCallum, B. Johnson, and C. Lew. “Anomalous, space-charge-limited piezoresistance in defect-engineered silicon.” (manuscript in preparation)
  27. B. Sapoval, S. Félix, and M. Filoche.  “Localisation and damping in resonators with complex geometry.” The European Physical Journal Special Topics 161, 225-232, 2008. doi:10.1140/epjst/e2008-00763-2
  28. M. Sauty, A. Thayil, J. S. Speck, A. I. Alhassan, C. Weisbuch, M. Filoche, L. Martinelli, Y.Lassailly and J. Peretti. “Evidence of the effect of alloy disorder on carrier transport in ternary III N by low energy photoemission spectroscopy” (manuscript in preparation)
  29. S. Semmes. “Analysis of and on uniformly rectifiable sets.” American Mathematical Society. Mathematical Surveys and Monographs 38, Providence, RI, xii+356, pp., 1993. doi:10.1090/surv/038
  30. C. Weisbuch, R. Dingle, A. C.V. Gossard, and W. Wiegmann. “Optical Characterization of Interface Disorder in GaAs-Gax Al1-x As quantum wells.” Solid State Communications. 38, 709, 1981. doi:10.1016/0038-1098(81)90401-4
  31. Y.-R. Wu, R. Shivaraman, K.-C. Wang and J. S. Speck. “Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure.”  Appl. Phys. Lett. 101, 083505, 2012. doi:10.1063/1.4747532