Computable Phenotypes for Long-COVID in EHR data
Industrial Problems Seminar
Miles Crosskey (CoVar Applied Technologies)
Abstract
Long COVID, a condition characterized by persistent symptoms following COVID-19 infection, poses challenges in identification due to its diverse manifestations and novelty. Leveraging the N3C Enclave's electronic health record (EHR) data, we devised a machine learning method to construct a computable phenotype for Long COVID. This approach enables the identification of individuals with this condition through EHR data. Our model demonstrates a sensitivity of 72.7% and a specificity of 96.3%, maintaining consistent performance on held-out sites. This technique contributes to a better understanding of Long COVID's prevalence and impact.
Category