Adversarial training and the generalized Wasserstein barycenter problem

Data Science Seminar

Matt Jacobs (Purdue University)


Adversarial training is a framework widely used by practitioners to enforce robustness of machine learning models. During the training process, the learner is pitted against an adversary who has the power to alter the input data. As a result, the learner is forced to build a model that is robust to data perturbations. Despite the importance and relative conceptual simplicity of adversarial training, there are many aspects that are still not well-understood (e.g. regularization effects, geometric/analytic interpretations, tradeoff between accuracy and robustness, etc...), particularly in the case of multiclass classification.

In this talk, I will show that in the non-parametric setting, the adversarial training problem is equivalent to a generalized version of the Wasserstein barycenter problem. The connection between these problems allows us to completely characterize the optimal adversarial strategy and to bring in tools from optimal transport to analyze and compute optimal classifiers. This also has implications for the parametric setting, as the value of the generalized barycenter problem gives a universal upper bound on the robustness/accuracy tradeoff inherent to adversarial training.

Joint work with Nicolas Garcia Trillos and Jakwang Kim


Start date
Tuesday, March 21, 2023, 1:25 p.m.
End date
Tuesday, March 21, 2023, 2:25 p.m.

Walter Library 402 or Zoom

Zoom registration