Dynamics of large irregular particles in turbulent flow

Margaret Byron, Assistant Professor of Mechanical Engineering at Penn State

AbstractEnvironmental flows are rarely single-phase: they often carry particles like dust, sediment, flocs, or even living organisms. The details of how these particles are transported can have significant impacts on engineering problems; we must therefore understand the physics behind their interactions with the surrounding flow. However, the particles we are interested in are frequently nonspherical, nontrivially large compared to the flow scales, and or otherwise irregular (e.g. made of multiple materials, or having a nonuniform mass distribution). Such particles are sometimes treated as point masses, or as semi-passive flow tracers—but this simplified view doesn’t capture the full variation of the particles’ behavior, especially in turbulence. In this talk, we will present results from recent laboratory experiments and explore how varying particle shape, size, and mass distribution affect their dynamics in environmental turbulence, and discuss implications for a wide range of engineering problems including sediment transport, microplastic pollution, and the global carbon cycle.

photo of Margaret Byron

AboutMargaret L. Byron is an Assistant Professor of Mechanical Engineering at Penn State University, where she directs the Environmental and Biological Fluid Mechanics (EBFM) Laboratory. She received her B.S.E. from Princeton University in Mechanical and Aerospace Engineering (2010), and her M.S. and Ph.D. from the University of California Berkeley (2012/2015). From 2015 – 2017 she was an NSF Postdoctoral Fellow in Biology at the University of California Irvine. She is a recipient of the American Chemical Society Doctoral New Investigator Award (2019), the Arnold and Mabel Beckman Foundation Young Investigator Award (2021), and the NSF CAREER Award (2022). Dr. Byron’s group studies the interactions between organisms and particles in environmental flows, with a particular focus on intermediate scales where inertial and viscous fluid forces are both important. She is interested in how animals control their position and orientation in turbulence, how swimming strategies scale with size and speed, and what this implies for their overall behavior and distribution in aquatic environments. She is also exploring the effects of particles’ size, shape, and mass properties on their kinematics in environmental flows; these problems have implications for sediment and pollutant transport.


Start date
Tuesday, Dec. 12, 2023, 3 p.m.

This is a hybrid event.

Attend in-person: St. Anthony Falls Laboratory, 2 Third Ave SE, Minneapolis, MN 55414


Watch The Livestream