The Charles C.S. Song Fellowship Award Ceremony & Distinguished Lecture by Dr. Michael Shelley

Presentation of the Charles C.S. Song Fellowship Award

Distinguished Speaker: Dr. Michael Shelley, co-founder and co-director of the Courant Institute's Applied Mathematics Lab at New York University, and is also the Director of the Center for Computational Biology at the Flatiron Institute

Title of Lecture: Modeling self-organization in active fluids and materials.

AbstractBiologically active materials -- like suspensions of swimming bacteria or other assemblies built of biological components -- can show strange, activity driven instabilities, organized states, and complex dynamics of a sort not found in more standard "nonliving" systems. We'll explore some of these phenomena through the lens of building, analyzing, and simulating models of prototype examples. These models can take the form of continuum models for the dynamics of suspensions of active particles (like bacteria), which can be analyzed for their dynamical bifurcation and nonlinear dynamics, or specialized software built to simulate very large systems of interacting active particles, and used to study swimming suspensions, growth and pattern formation in bacterial colonies, and cytoskeletal assemblies driven by molecular motors.

dr. michael shelley

AboutDr. Michael J. Shelley is an applied mathematician who works on the modeling and simulation of complex systems arising in physics and biology. This has included free-boundary problems in fluids and materials science, singularity formation in partial differential equations, modeling visual perception in the primary visual cortex, dynamics of complex and active fluids, cellular biophysics, and fluid-structure interaction problems such as the flapping of flags, stream-lining in nature, and flapping flight. He is  the co-founder and co-director of the Courant Institute's Applied Mathematics Lab  at New York University, and is also the Director of the Center for Computational Biology at the Flatiron Institute.  He holds a B.A. in mathematics from the University of Colorado and a Ph.D. in applied mathematics from the University of Arizona. He was a postdoctoral researcher at Princeton University and a member of the mathematics faculty at the University of Chicago before joining NYU. Shelley has received the François Frenkiel Award from the American Physical Society and the Julian Cole Lectureship from the Society for Industrial and Applied Mathematics, and he is a Fellow of both societies. He is also a Fellow of the American Academy of Arts and Sciences and a member of the National Academy of Sciences.
 

Award Recipient:  Zih-Yin Chen is a PhD candidate in Mechanical Engineering at University of Minnesota

zih yin chen

Talk Title: Thin film flow with an undulating surface

AbstractApple snails (Pomacea canaliculata) collect food particles on the free surface by deforming their feet and generating periodic undulations underneath the air-water interface. Inspired by this peculiar feeding behavior, we develop a 2D thin-film mathematical model to explore the physical mechanism of free surface flows driven by periodic undulations. We find the surface undulations cause normal stresses that deform the air-fluid interface and drive a net flow, which is directly controlled by the fluid properties and the undulation wave speed. Our model also demonstrates the effects of inertia that can significantly alter thin-film flows, in good agreement with the experimental observations. In this talk, we will discuss some preliminary model results along with the experimental findings and offer plausible physical mechanisms driving the flow system.

About the recipient: I am a PhD candidate in Mechanical Engineering and my advisor is Professor Sungyon Lee.  My Ph.D. research aims to bring fundamental understanding of fluid dynamics processes at the fluid-fluid interface that are inspired by liquid coating applications, especially on the topics related to droplets and thin film dynamics. I use the theoretical modeling and the resultant simulations to rationalize the experimental findings and uncover the underlying physics. I received my BS and MS degree from National Taiwan University.
 

Category
Start date
Tuesday, March 26, 2024, 3 p.m.
Location

This is a hybrid event.

Attend in-person: St. Anthony Falls Laboratory, 2 Third Ave SE, Minneapolis, MN 55414

OR

Watch The Livestream

 

Share