Nels Nelson Award Ceremony & Distinguished Lecture by Jennifer Stucker

Presentation of the Nels Nelson Memorial Fellowship Award

Speaker: Jennifer Stucker, Senior Biologist, Offshore Wind Lead at Western EcoSystems Technology, Inc.

Title: A Multi-sensor Approach For Measuring Bird And Bat Collisions With Offshore Wind Turbines, and Other Insights from Collaborations with Engineers

photo of jennifer stucker and a wind turbine

AbstractOffshore wind energy development is poised for rapid growth and expansion worldwide to meet green-energy targets. Understanding the potential magnitude of bird and bat collisions at offshore wind facilities is important, because standardized carcass searches are impossible, and model-based estimates unvalidated. Collision monitoring systems can provide specific details about collisions, which are necessary to advance minimization strategies to reduce wind farm fatalities. Automated collision monitoring technologies can help inform and focus mitigation where needed. WEST leads a collaboration with the Netherlands Organisation for Applied Scientific Research and the National Renewable Energy Laboratory (NREL) to advance the validation of the WT-Bird® system for detecting and quantifying bird and bat collisions at offshore wind turbines. The effort is funded primarily by the US DOE's Wind Energy Technologies Office. The objective is to advance the WT-Bird® system to detect large, medium, and small bird and bat collisions during day and nighttime hours. Three major technological advancements from the project are to: 1) improve the sensors to detect collisions of small birds and bats, 2) integrate machine learning algorithms to process imagery data collected by the cameras, and 3) create a launching system to realistically simulate collisions. The updated system is designed to detect collisions including objects as small as 8 grams using acceleration sensors installed inside of the turbine blades. Independently operating cameras installed at the base of the turbine document bird and bat presence near the camera, and document collision events. The system was tested at a single turbine at NREL’s campus using the projectile launching system, where the detection rate exceeded 70% across all size classes. Subsequently, the system was installed on the University of Minnesota turbine for trials with a WEST edge-AI system processing camera imagery to identify birds and bats within the camera view, and validated with independent ground-based fatality searches. The estimate from the WTBird® detections (18.46 fatalities) was within the 90% confidence interval of the ground-based estimate (16.88) with a difference in the point estimates of only 1.58 fatalities.

Jennifer will talk about how biologists and engineers can and should work together to tackle wildlife and energy challenges to support the blue and green economies. She will provide key insights on talking a common language.

AboutJennifer Stucker, PhD is a Senior Biologist and Offshore Wind Lead with Western EcoSystems Technology, Inc, an environmental and statistical consulting firm. She has served as the project manager and biologist for this US Department of Energy funded project, A Multi-sensor Approach for Measuring Bird and Bat Collisions with Offshore Wind Turbines. Dr. Stucker received her BA from Wittenberg University in Ohio, before completing two degrees at the University of Minnesota, a MS in Wildlife Conservation, and a Ph.D. in Conservation Biology.  Prior to working with WEST, she worked for USGS as a Research Wildlife Biologist for 10 years.  Over the last 18 years, Jennifer has had experience designing effectiveness and monitoring studies for wildlife interactions with hydropower, wind, and solar facilities during planning and operations.  When not working, you will find her with her family, and training dogs.

Award Recipient: Xiating Chen, PhD Candidate in Water Resources Engineering at the Saint Anthony Falls Laboratory

Xiating Chen, photo

Abstract: TBD

About the recipientXiating Chen is a PhD candidate in water resources engineering at the St. Anthony Falls Laboratory studying under Professor Xue Feng. Her research is focused on eco-hydrological functions of urban trees and other green infrastructure at both local and watershed-scale, through combined field observations and modeling approaches. Xiating received her Bachelor of Science in Engineering degree from Duke University. 

Category
Start date
Tuesday, March 12, 2024, 3 p.m.
Location

This is a hybrid event.

Attend in-person: St. Anthony Falls Laboratory, 2 Third Ave SE, Minneapolis, MN 55414

OR

Watch The Livestream

 

Share