My research focuses around two central tenets: the characterization and design of novel soft materials via advanced rheological and neutron scattering techniques, and the development of new scattering sample environments, techniques and analysis methods for use within the broader scientific community. The design of soft materials with optimal structure and flow properties is critical in applications ranging from polymer processing to drug delivery, where materials undergo nonlinear deformations during processing, transport and use. Rheology and neutron scattering provide a platform to develop ‘structure-property’ relationships in flowing materials, where our specific research interests include applications in medicine, energy, and consumer products. After assessing factors affecting flow stability and material performance, we then use this insight to design and develop more robust, stable soft materials. In conjunction, frequent work at both national and international scattering facilities including NIST (Gaithersburg, MD) and ILL (Grenoble, France) allows for the development new techniques and flow-small angle scattering sample environments to reproduce realistic flows for these applications.
Research Group
Support Michelle Calabrese's Research