Cellular engineering

Cellular mechanics and mechanobiology
Many cells in tissues are exposed to dynamic mechanical perturbations, which require constant feedback by those cells to maintain tissue function. The Alford Lab uses novel microfabrication and computational methods to better understand this cellular adaptation in development and disease.

Engineering the immune response
The Hartwell Immunoengineering Lab uses biomolecular engineering, drug delivery, and immunology to develop molecular vaccines and immunotherapies that direct the immune response towards activation or tolerance by targeting specific cells and tissues, with a focus on the mucosal immune system.

Engineering stem cell-derived immunotherapies
The Khalil group uses pluripotent stem cells and genetic engineering to study immune mechanisms in cancer and chronic diseases. By examining pathways that regulate immune cell functions, the lab seeks to create next-generation and transformative cell-based therapeutic strategies and enhance patient outcomes.

How cellular functions go awry
The Odde Lab aims to understand basic cellular functions in the context of diseases such as brain cancer and Alzheimer's. The team develops physics-based models that predict cell behavior, then use computer simulation and live cell imaging to identify potential therapeutic strategies.

Bioprinting cardiac tissues
The Ogle Lab is pushing the boundaries of 3D cardiac bioprinting. They’ve created patches that can be adhered to failing hearts, which has successfully restored cardiac function in rodents. Plus, they’ve fabricated living hearts based on a human heart’s magnetic resonance imaging (MRI) data.

Bioengineering cancer therapies
Paolo Provenzano’s lab is developing new ways to combat cancer. Approaches include re-engineering tumor microenvironments to remove tumor-promoting cues, enhancing drug delivery, promoting anti-tumor immune responses, and developing next-generation cell-based therapies.

Discovering treatments at the molecular scale
The Sachs Lab is trying to explain how molecules malfunction in diseases like arthritis and Parkinson’s, to discover new treatment strategies. To do this, the team combines experimental biophysics, cell biology, and computational modeling using some of the world’s fastest supercomputers.

Understanding protein networks
The Sarkar laboratory uses approaches from biomolecular engineering and biology to better understand how protein networks drive health-related processes at the cellular level. Ultimately, this could lead to more effective therapeutics, such as to stop the proliferation of cancer.

Engineering biomaterials to model diseases
Wei Shen’s laboratory engineers biomaterials, studies how they interact in microenvironments, and models diseases. They’ve created material for studying muscular dystrophy, a nanoparticle platform for antiviral therapy, and oxygen-releasing materials for cell-based therapy.

Living valves for growing bodies
Bob Tranquillo’s laboratory develops biologically engineered “off-the-shelf” vascular grafts, heart valves, and vein valves. They’ve shown the material, produced by skin cells, has the capacity to grow, which may transform the way pediatric congenital heart defects are treated.
Research from our graduate faculty

Understanding cell signaling networks
The Batchelor lab combines computational and experimental approaches to understand the regulation and function of cell signaling pathways related to cancer development and progression. The group develops methods to manipulate cell signaling events to restore proper functions in pathological conditions.

Quantitative imaging of brain energy metabolism
Wei Chen’s lab has developed a variety of X-nuclear magnetic resonance spectroscopic imaging methodologies and advanced radiofrequency coil technologies for noninvasively studying cellular metabolism, bioenergetics, function and dysfunction of the brain and other organs at ultrahigh field.

Preserving living therapies
Allison Hubel’s Lab uses bio-inspired methods to improve the preservation of cells. Combinations of osmolytes are used to control the behavior of water and cell structures at low temperature. The Hubel lab also uses Raman spectroscopy to understand low-temperature cell behavior.

Quantitative virus and cancer imaging
Louis Mansky’s research group is addressing questions involving macromolecular assemblies important in virus and cancer pathobiology with quantitative fluorescence, electron imaging techniques, and large data informatics.

Finding new therapies for spinal cord injury
The Parr Lab combines cutting edge 3D bioprinting technology with advancements in stem cell derived, regionally specific spinal neural progenitor cells to develop new treatments for spinal cord injury patients.