Cellular engineering

Close up of cells

Cellular mechanics and mechanobiology

Many cells in tissues are exposed to dynamic mechanical perturbations, which require constant feedback by those cells to maintain tissue function. The Alford Lab uses novel microfabrication and computational methods to better understand this cellular adaptation in development and disease.

biomedical image showcasing the mucosal area.

Engineering the immune response

The Hartwell Immunoengineering Lab uses biomolecular engineering, drug delivery, and immunology to develop molecular vaccines and immunotherapies that direct the immune response towards activation or tolerance by targeting specific cells and tissues, with a focus on the mucosal immune system.

pluripotent stem cells

Engineering stem cell-derived immunotherapies

The Khalil group uses pluripotent stem cells and genetic engineering to study immune mechanisms in cancer and chronic diseases. By examining pathways that regulate immune cell functions, the lab seeks to create next-generation and transformative cell-based therapeutic strategies and enhance patient outcomes.

Biomedical scan to understand cell behavior

How cellular functions go awry

The Odde Lab aims to understand basic cellular functions in the context of diseases such as brain cancer and Alzheimer's. The team develops physics-based models that predict cell behavior, then use computer simulation and live cell imaging to identify potential therapeutic strategies.

3-D printed tissue.

Bioprinting cardiac tissues

The Ogle Lab is pushing the boundaries of 3D cardiac bioprinting. They’ve created patches that can be adhered to failing hearts, which has successfully restored cardiac function in rodents. Plus, they’ve fabricated living hearts based on a human heart’s magnetic resonance imaging (MRI) data.

tumor microenvironment

Bioengineering cancer therapies

Paolo Provenzano’s lab is developing new ways to combat cancer. Approaches include re-engineering tumor microenvironments to remove tumor-promoting cues, enhancing drug delivery, promoting anti-tumor immune responses, and developing next-generation cell-based therapies.

Computer-generated graphic of colored strips at the molecular level; conveys movement

Discovering treatments at the molecular scale

The Sachs Lab is trying to explain how molecules malfunction in diseases like arthritis and Parkinson’s, to discover new treatment strategies. To do this, the team combines experimental biophysics, cell biology, and computational modeling using some of the world’s fastest supercomputers.  

cellular biology

Understanding protein networks

The Sarkar laboratory uses approaches from biomolecular engineering and biology to better understand how protein networks drive health-related processes at the cellular level. Ultimately, this could lead to more effective therapeutics, such as to stop the proliferation of cancer.

nanoparticle platform

Engineering biomaterials to model diseases

Wei Shen’s laboratory engineers biomaterials, studies how they interact in microenvironments, and models diseases. They’ve created material for studying muscular dystrophy, a nanoparticle platform for antiviral therapy, and oxygen-releasing materials for cell-based therapy.

Hand holding a white engineered heart valve. Person is wearing pink surgical gloves.

Living valves for growing bodies

Bob Tranquillo’s laboratory develops biologically engineered “off-the-shelf” vascular grafts, heart valves, and vein valves. They’ve shown the material, produced by skin cells, has the capacity to grow, which may transform the way pediatric congenital heart defects are treated.

Research from our graduate faculty

Breast cancer cells expressing a tumor suppressor protein

Understanding cell signaling networks

The Batchelor lab combines computational and experimental approaches to understand the regulation and function of cell signaling pathways related to cancer development and progression. The group develops methods to manipulate cell signaling events to restore proper functions in pathological conditions.

Imaging of human brain cerebral metabolic rates

Quantitative imaging of brain energy metabolism

Wei Chen’s lab has developed a variety of X-nuclear magnetic resonance spectroscopic imaging methodologies and advanced radiofrequency coil technologies for noninvasively studying cellular metabolism, bioenergetics, function and dysfunction of the brain and other organs at ultrahigh field.

brain activity

Preserving living therapies

Allison Hubel’s Lab uses bio-inspired methods to improve the preservation of cells. Combinations of osmolytes are used to control the behavior of water and cell structures at low temperature. The Hubel lab also uses Raman spectroscopy to understand low-temperature cell behavior.

concept of point spread function engineering

Quantitative virus and cancer imaging

Louis Mansky’s research group is addressing questions involving macromolecular assemblies important in virus and cancer pathobiology with quantitative fluorescence, electron imaging techniques, and large data informatics. 

3D bio-printed scaffold

Finding new therapies for spinal cord injury

The Parr Lab combines cutting edge 3D bioprinting technology with advancements in stem cell derived, regionally specific spinal neural progenitor cells to develop new treatments for spinal cord injury patients.