Close up of cells

Cellular mechanics and mechanobiology

Many cells in tissues are exposed to dynamic mechanical perturbations, which require constant feedback by those cells to maintain tissue function. The Alford Lab uses novel microfabrication and computational methods to better understand this cellular adaptation in development and disease.

Close-up of abdominal aorta

Tissue mechanics, aneurysms, and pain

The Barocas research group explores the relationship between tissue architecture and mechanics using multiscale computational models and mechanical experiments. Currently, they’re researching how aneurysms grow and fail, and how spinal load leads to injury or pain.

Image at the cellular level using imaging technology. Shows cluster with various colored arrows indicating the level of traction stress (Pa) from 0 to 1,500; more stress shown at the edges. Shown at a scale of 20 um. U251.

How cellular functions go awry

The Odde Lab aims to understand basic cellular functions in the context of diseases such as brain cancer and Alzheimer's. The team develops physics-based models that predict cell behavior, then use computer simulation and live cell imaging to identify potential therapeutic strategies.

Image at the microscopic level using imaging technology. Vivid reds, purples and blues against a black background.

Bioengineering cancer therapies

Paolo Provenzano’s lab is developing new ways to combat cancer. Approaches include re-engineering tumor microenvironments to remove tumor-promoting cues, enhancing drug delivery, promoting anti-tumor immune responses, and developing next-generation cell-based therapies.

Hand holding a white engineered heart valve. Person is wearing pink surgical gloves.

Living valves for growing bodies

Bob Tranquillo’s laboratory develops biologically engineered “off-the-shelf” vascular grafts, heart valves, and vein valves. They’ve shown the material, produced by skin cells, has the capacity to grow, which may transform the way pediatric congenital heart defects are treated.

Silhouette of pregnant woman

Pregnancy and soft tissue biomechanics

Kyoko Yoshida's lab studies how soft tissues grow and remodel to support a healthy pregnancy. They combine experimental and computational methods to uncover how mechanical and hormonal changes interact to drive dramatic tissue changes during pregnancy.