MWRF Project Summaries

Projects Recently Funded by the Minnesota Water Research Fund

2021: Impacts of vegetation on surface water/groundwater interactions 

Lead investigators: Assistant Professor Judy Yang with graduate student Shih-Hsun Huang

Preserving the health of streams is vital to ensure safe drinking water and fishery products, yet many streams are degraded and contaminated. Projects to restore streams cost over a billion dollars per year in the US. However, the environmental impacts of many restoration strategies, such as replant vegetation, have not been fully understood. Researchers are innovatively using transparent sediment (hydrogel beads) and translucent vegetation (acrylic rods), combined with fluorescent dye, to study how vegetation enhances the exchange of water, solutes, and particles between surface water and sediment/groundwater. 

2021: ISCO automated water sampling devices

MWRF assisted with the purchase of 4 ISCO automated water sampling devices for CEGE faculty and students to use when doing water research. Projects utilizing this equipment could include those focused on stormwater quality and treatment, drinking water treatment, wastewater treatment, and surface water quality assessment. The devices are also used for teaching CEGE students. Experience with the ISCO automated water sampling devices will be beneficial for employment with both industry and government agencies.

2020: Optimization of water quality monitoring in streams

Lead Investigator: Adjunct Associate Professor Paul Capel with undergraduate students Aldo Bazan, CEGE; Malik Khadar, CS&E; Sam Maijala, CEGE; and Abdimohsin Sahidm, ESPM

Monitoring streams and rivers for water quality (WQ) is expensive but critically important. WQ monitoring is conducted by numerous agencies including state, local, and watershed authorities; tribes; and private organizations. Monitoring data is necessary for informed decision-making by water resource managers. This project will apply machine learning methods to existing high frequency WQ and streamflow data from a variety of streams to quantify the degree of accuracy of commonly used monitoring strategies and suggest targeted strategies based on stream characteristics.

2019: Water-conscious cultivar selection for protecting MN groundwater

Lead Investigators: Assistant Professor Xue Feng with graduate student Brandon Sloan

Increasing irrigation efficiency involves maintaining high crop yields while minimizing monetary and environmental water costs. Many Minnesota farmers have already taken action to increase efficiency by planting cover crops and using smart irrigation technologies. MWRF provided seed funding for early-stage exploration into selection of water-efficient cultivars that maintain high yields while reducing negative impacts to Minnesota aquifers. The scope of our investigation has now expanded as Ph.D. candidate Sloan explores the role of vegetation water use and its effect on climate.

2018: N-nitrosodimethylamine precursors in the Upper Mississippi River

Lead Investigator: Professor Raymond Hozalski

N-nitrosodimethylamine (NDMA) is a highly toxic disinfection byproduct formed by reaction of chloramine species with organic-N containing precursors in the water. Bench and pilot-scale testing and full-scale sampling at two water utilities on the Upper Mississippi River suggested that the river water often contains relatively high concentrations of NDMA precursors and pre-precursors. Pre-precursors refers to those precursors that appear to require lime softening treatment to become "activated" and available to form NDMA upon chloramination. This project involved a sampling campaign in the Crow River from source areas to the confluence with the Mississippi River to assess spatial and temporal variability in NDMA precursor and pre-precursor levels in the water. 

2018: Integrated biocatalysis and reactor design for clean water and energy
from waste

Lead Investigators: Professors William Arnold and Paige Novak

This project focused on demonstrating a treatment approach for high strength wastewater that used encapsulated bacteria and a two-stage reactor. This research has also subsequently been funded by other sources: the MnDRIVE: Environment Initiative at the University of Minnesota and recently, by a US Department of Energy grant. The vision is to create a treatment process that is small-footprint, requires little O&M, generates energy, and saves the energy (and associated CO2 emissions) that would otherwise be expended for traditional centralized treatment.

2017: Innovative nitrogen removal project for wastewater

Lead Investigators: Professors Paige Novak and Santiago Romero-Vargas Castrillion with graduate student Anndee Huff 

The project sought to develop a new polymer material that could sorb ammonium, and in doing so, enrich and retain anaerobic or aerobic ammonium oxidizing bacteria. The ultimate goal of this project, subsequently supported by the Legislative-Citizen Commission on Minnesota Resources, was to develop a material that would enable robust nutrient removal in wastewater using much less energy than is currently used, facilitating the development of energy-producing wastewater treatment plants.

For more information or to join our mailing list, visit z.umn.edu/MNWaterResearchFund
or contact Bernie Bullert (bernie.bullert@sl-serco.comor Shannon Wolkerstorfer (swolkers@umn.edu).