On Virtual Id Assignment in Networks for High Resilience Routing: A Theoretical Framework [conference paper]

Conference

IEEE Global Communications Conference (GLOBECOMM) - December 7-11, 2020

Authors

Gyan Ranjan (Ph.D. 2013), Tu N. Nguyen, Hesham Mekky (Ph.D. 2016), Zhi Li Zhang (professor)

Abstract

In recent years, the effort of promoting versatile, easy to manage routing schemes, as a replacement to OSPF has gathered momentum particularly in the context of large-scale enterprise networks, data center networks and software-defined wide area networks (SD-WANs). Such routing schemes rely on embedding the network into a geometric/topological space (e.g. a binary tree) to facilitate multi-path routing with reduced state maintenance and quick recovery in localized failure scenarios. In this work, we propose a systematic framework to embed the network topology into a hierarchical binary virtual-identityspace that is particularly amenable to multi-path routing. Our methodology firstly involves a relaxed form of the connected graph bi-partitioning problem that exploits a geometric embedding of the network in an n-dimensional Euclidean space (n being the number of hosts in the network) based on the Moore-Penrose pseudo inverse of the Laplacian for the graph associated with the network. The edges of the network are mapped to a weight distribution that helps construct a spanning tree from the core of the network towards the periphery, thereby providing a point of symmetry in the network to facilitate balanced bipartitions. This, in turn, yields a (nearly) full balanced binary tree embedding of the network and consequently a good virtual-id space. We also explore the binary identity assignment problem in another point of view by using bi-connected graph as the input graph to introduce a recursive bipartition algorithm. Through rigorous theoretical analysis and experimentation, we demonstrate that our methods perform well within reasonable bounds of computational complexity.

Link to full paper

On Virtual Id Assignment in Networks for High Resilience Routing: A Theoretical Framework

Keywords

networking

Share