Past events

Graduate Programs Information Session

Prospective students can RSVP for an information session to learn about the following graduate programs:

  • Computer Science M.S.
  • Computer Science MCS
  • Computer Science Ph.D.
  • Data Science M.S.
  • Data Science Post-Baccalaureate Certificate

During the information session, we will go over the following:

  • Requirements (general)
  • Applying
  • Prerequisite requirements
  • What makes a strong applicant
  • Funding
  • Resources
  • Common Questions
  • Questions from attendees

Carlis Memorial Lecture: What can I do today to create a more inclusive community in CS?

The John V. Carlis Memorial Lecture is dedicated to the advancement of education and inclusion in the field of computing.

This year's speaker is Cynthia Lee from Stanford University, giving a talk titled "What can I do today to create a more inclusive community in CS?".

Abstract

Many people who work in STEM wish that our field were more diverse and earnestly want to be part of the solution, yet aren't sure where to begin. This talk will focus on concrete, actionable suggestions that anyone in our field can implement to help create a more inclusive and equitable environment. Drawing on lessons learned in her teaching, research, and mentorship programs, Dr. Lee will provide an inclusion toolkit ranging from 5-minute targeted interventions to lifelong habits. 

Biography

Cynthia Lee is a Lecturer in the Computer Science Department at Stanford. She specializes in team-based and question-based course design, and founded peerinstruction4cs.org to support educators in flipping their computer science classrooms using peer instruction. Her teaching awards include the Lloyd W. Dinkelspiel Award for "distinctive and exceptional contributions to undergraduate education at Stanford," a "Top 10 Papers of All Time" award at the 50th anniversary of the ACM SIGCSE technical symposium, and the Stanford Society of Women Engineers' Professor of the Year. She has a PhD in high-performance computing from UC San Diego. Her industry work experience includes NASA Ames and startups.

Robotics Colloquium: 3D Printing Functional Materials and Devices

This week's speaker, Michael McAlpine, will be giving a talk titled "3D Printing Functional Materials and Devices."

Abstract

The ability to three-dimensionally interweave biological and functional materials could enable the creation of devices possessing personalized geometries and functionalities. Indeed, interfacing active devices with biology in 3D could impact a variety of fields, including biomedical devices, regenerative biomedicines, bioelectronics, smart prosthetics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature-sensitive. This renders most biological platforms incompatible with the fabrication and material processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid, and brittle. A number of strategies have been developed to overcome these dichotomies.

Our approach is to utilize extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers freeform, autonomous fabrication. This approach addresses the challenges presented above by (1) using 3D printing and imaging for personalized device architectures; (2) employing ‘nano-inks’ as an enabling route for introducing a diverse palette of functionalities; and (3) combining 3D printing of biological and functional inks on a common platform to enable the interweaving of these two worlds, from biological to electronic. 3D printing is a multiscale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, functional materials, and ‘living’ inks may enable next-generation 3D printed devices.

Biography

 

Michael C. McAlpine is the Kuhrmeyer Family Chair Professor of Mechanical Engineering at the University of Minnesota. He received a B.S. in Chemistry with honors from Brown University (2000), and a Ph.D. in Chemistry from Harvard University (2006).

His current research is focused on 3D printing functional materials and devices for biomedical applications, with recent breakthroughs in 3D printed deformable sensors and 3D printed bionic eyes (one of National Geographic’s 12 Innovations that will Revolutionize the Future of Medicine). He has received several awards for this work, including the Presidential Early Career Award for Scientists and Engineers (PECASE), and the National Institutes of Health Director’s New Innovator Award.